

Programming a PIP Party:
A Scratch Design Challenge Mission Brief

 Subject:
Computational

Thinking/Coding

Grade: Kindergarten
through 8th Grade

Time: 90 minutes

Learning Objectives:
● Apply programming concepts and problem-solving skills to design and create a dance party

featuring PIP in Scratch or Scratch, Jr.

● Foster creativity and critical thinking through the development of program mechanics,
obstacles, backgrounds, and sprites.

● Encourage collaboration and peer feedback during the playtesting and iteration process.

Standards and Competencies:
NGSS Elementary (K-5)

• 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes
specified criteria for success and constraints on materials, time, or cost.

• 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how
well each is likely to meet the criteria and constraints of the problem.

• 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points
are considered to identify aspects of a model or prototype that can be improved.

NGSS Middle School (6-8)

• MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar
system.

• MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision
to ensure a successful solution, taking into account relevant scientific principles and
potential impacts on people and the natural environment that may limit possible solutions.

• MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine
how well they meet the criteria and constraints of the problem.

• MS-ETS1-3. Analyze data from tests to determine similarities and differences among several
design solutions to identify the best characteristics of each that can be combined into a new
solution to better meet the criteria for success.

• MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a
proposed object, tool, or process such that an optimal design can be achieved.

http://www.scratch.mit.edu/

Background Knowledge:
● Read the book “PIP Goes Incredibly Fast”
● Review the Engineering Design Process, as needed, using your preferred steps.
● Review Scratch Basics

○ Recap key Scratch concepts, including sprites, backdrops, and basic programming
blocks (e.g., motion, sensing, conditionals).

○ If necessary, provide a brief demonstration or refresher on using Scratch's interface
and block system.

Teacher Challenge Preparations:
● Familiarize yourself with Scratch:

○ Explore the Scratch website (www.scratch.mit.edu) and review the available
resources (https://scratch.mit.edu/educators/) , tutorials, and project examples
(https://resources.scratch.mit.edu/www/guides/en/EducatorGuidesAll.pdf)

○ Create a Scratch account if you don't have one, as it allows you to save and share
projects.

○ Spend time experimenting with Scratch yourself to gain hands-on experience and
become comfortable with the interface and basic programming concepts.

Materials:

● “PIP Goes Incredibly Fast” Storybook
● Computers or laptops with Scratch installed (Scratch can be accessed online at

www.scratch.mit.edu)
● Projector or screen for demonstration purposes (optional)
● Scratch tutorial handouts (optional)
● Planning paper (optional)

https://www.nextgenscience.org/sites/ngss/files/Appendix%20I%20-%20Engineering%20Design%20in%20NGSS%20-%20FINAL_V2.pdf
http://www.scratch.mit.edu/
https://scratch.mit.edu/educators/
https://resources.scratch.mit.edu/www/guides/en/EducatorGuidesAll.pdf
http://www.scratch.mit.edu/

Procedure:
Introduction (10 minutes)

● Welcome the students and provide an overview of the design challenge.
● Explain the objective of creating a party simulation using Scratch.
● Emphasize the importance of applying programming concepts and problem-solving skills.

Design the Program (20 minutes)

● Discuss the components of the party, such as the space backdrop, sprite (must include
P.I.P), movements, and obstacles.

● Encourage students to brainstorm ideas for the party simulation design, player controls, and
win conditions, if needed.

● Remind students to consider how to handle collisions, movement restrictions, and other
project mechanics.

Hands-on Coding (30 minutes)

● Allow students to work individually or in pairs to start implementing their program design.
● Provide support and guidance as needed, answering questions and offering suggestions.
● Remind students to use programming concepts like conditionals, loops, and event blocks to

create program functionality.

Playtesting and Peer Feedback (10 minutes)

● Allocate time for students to playtest their programs.
● Encourage them to exchange programs and provide constructive feedback to their peers.
● Facilitate a class discussion on the strengths and areas for improvement in each program.

Iteration and Refinement (10 minutes)

● Encourage students to incorporate feedback and make necessary adjustments to their
programs.

● Discuss the importance of iterating and refining designs based on feedback and testing.
● Remind students to test their updated programs to ensure the changes have the desired

effect.

Final Presentations (15 minutes)

● Provide an opportunity for students to showcase their completed programs to the class.
● Each student or pair should explain their program mechanics, controls, and sprites.
● Encourage the audience to ask questions and provide positive feedback.

Assessment:
Reflection and Wrap-up (5 minutes)

● Lead a short discussion on the design
process, challenges faced, and lessons
learned.

● Ask students to reflect on how they
applied programming concepts and
problem-solving skills during the
challenge.

● Have students identify a “Glow”
(positive comment) and “Grow”
(constructive feedback) for themselves
or peers.

● Wrap up the lesson by acknowledging
students' efforts and encouraging
them to continue exploring Scratch and
simulation design.

 Additional Resources:
Extension Activities

● Challenge students to create additional

levels or increase the complexity of

their programs.

● Introduce advanced programming

concepts, such as custom blocks,

variables, or advanced sensing blocks.

● Explore the possibility of incorporating

sounds, animations, or power-ups into

the programs.

● Encourage students to share their

completed programs with others or

publish them on the Scratch community

platform.

**Note: The duration and complexity of the design challenge can be adjusted based on the students’

age, skill level, available materials, and time constraints.

